UCRL-1D-122514

Softwar e Safety Hazard Analysis

Version 2.0

Prepared by
J. Dennis L awrence

Prepared for
U.S. Nuclear Regulatory Commission

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercia product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of Californiaand shall
not be used for advertising or product endorsement purposes.

Thiswork was supported by the United States Nuclear Regulatory commission under a Memorandum of
Understanding with the United States Department of Energy, and performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

Softwar e Safety Hazard Analysis

Manuscript date: October 1995

Prepared by
J. Dennis L awrence

L awrence Livermore National L abor atory
7000 East Avenue
Livermore, CA 94550

Prepared for
U.S. Nuclear Regulatory Commission

Software Safety Hazard Analysis

Software Safety Hazard Analysis

ABSTRACT

Techniques for analyzing the safety and reliability of analog-based electronic protection systems that
serve to mitigate hazards in process control systems have been developed over many years, and are
reasonably well understood. An example is the protection system in a nuclear power plant The extension
of these techniques to systems which include digital computersis not well developed, and thereislittle
consensus among software engineering experts and safety experts on how to analyze such systems.

One possible technique is to extend hazard analysis to include digital computer-based systems. Software
is frequently overlooked during system hazard analyses, but this is unacceptable when the softwareisin
control of a potentially hazardous operation. In such cases, hazard analysis should be extended to fully
cover the software. A method for performing software hazard analysis is proposed in this paper.

Software Safety Hazard Analysis

Software Safety Hazard Analysis

CONTENTS
ACKNOWIEAGIMENL ...ttt ettt h e b he s b e e b e bt sh e b e b e se e e e e e e e e e Reeae e Rt eheebeebesbeebenbeseeneetees vii
ADBDIEVIBLIONS ...ttt e r e r e viii
O g1 0o [1 o o 1SS 1
R U oo TSP 1
O = oo 1 (o = S 1
1.3 TOIMINOIOY ..ttt sttt b et b bt e b bbbt R bt e b e e e b bt eer et nnnnens 2
2. Introduction to the Software Hazard ANalYSIS PrOCESSccuriiriieree ettt ebe s 3
2.1. Software Hazard Analysis as Part of System Safety ANAlYSIS.....cocveiereeierierere e 3
2.2. Software Hazard Analysis as Part Of SOftWare DESIQNccviveiiirieieserieieeeeetee ettt e se e eneas 4
2.3. General Approach to Software Hazard ANaIYSISooeieriirieiereeeeee et e 4
2.4. Prerequisites to SOftware Hazard ANAIYSISc.corriiie ettt et e e e e e eneas 5
3. ReqQUITEMENES HAZArd ANAIYSIS.....c.cciiiieiieitiie ettt ettt st e st et e et e e esaeseeseeseebesaesae st e s beseeseenteneeseensensensen 8
3.1. Inputs to Software Requirements Hazard ANAIYSIS.ccooiririiiiinene e 14
3.2, ANAIYSIS PrOCEAUIES.......ceeeiie ettt ettt et b e et e e e e e e et eheeh e e aeeaeeb e s besaeebeebeseeseenbeneeneenseneene 14
3.3. Outputs of Software Requirements Hazard ANBIYSIS.........cuoeireirieinieinieniesess e 15
4. Architectural DeSigN HaZard ANBIYSISooiiiiiiiieieeert sttt et b et sae b b et e b b e e e e e e 15
4.1. Inputs to Software Architecture Hazard ANGIYSIS.cocoiriiiiiniie e 16
A.2. ANBIYSIS PrOCEOUIESottt b et b e e b e s bbbt bbb e bt b et s b et b et et e b et 16
4.3. Outputs of Software Architecture Hazard ANAIYSIS........coeoiiiiinnenre et 18
5. Detailed DeSigN HAZard ANAIYSIS.coe ittt sttt st ee e e e s e se e e e e et s st ebesaesaesbesbeseeseebenbeseensansenn 18
5.1. Inputs to Software Detailed Design Hazard ANalYSIS.........cccveiririiinieeeeseeeseee e 19
5.2, ANBIYSIS PrOCEOUIESeeuitiristieete ettt bbbt bt bbbt b et b bbbt b et bt e et 19
5.3. Outputs of Software Detailed Design Hazard ANAYSIS......cocvererererereeeeesese s sese e se e seesee e seessesennm 19
6. Code HAzZAd ANAIYSIS ..ot s 19
6.1. Inputs to Software Code Hazard ANAlYSIScouiviiiiiiiieici i 20
L N = YA T 0 0= L1 = 20
6.3. Outputs of Software Code Hazard ANBIYSIS..........ccicvieieieiisesiesese e ettt te e srenae e 20
7. SUMMAY AN CONCIUSIONS........evitiieeirteirteest ettt sttt e et sb et st ea e eb et b e e e b e b eb e s e eb e b e bt b e bt s b e se st ene b eneebeneebennene e 20
T L = = oo SOOI 23
APPENAIX A. BACKGIOUNG........oiiiiieiie ettt sttt st e e e e e e s e seeseeaeeteesesaesbesbesaeseebesseseansenteseneenem 25
AL SEANAAITAS REVIEIV ...ttt ettt b e e b e b e e b e s e st n et n et n et r e 25
A.2. General Discussion Of HAZard ANBIYSIS........coouiiriiiiiieie et sb e b e st see e e s 33
A.3. NIST Review of Software Hazard ANBIYSES.........cciirririiree ettt eb e e s 38
A.4. Review oOf the PUDITISEA LItEratUre........ccccierieeeeeeeeetcse et sre e seestestesee e e eenee e 39
Appendix B. Potential Software Safety AnalySiS MEthOdS..........cccooiiiiiiiiiiiie e s 41
Appendix C. Software TOOISfor Hazard ANGIYSIS.........ccceeiiiiiiiiisie ettt sresae e saeneenem 45
C.L FAUIT TIEE ANBIYSIS. ...ttt ettt b e b e bbb e s b se et e b e se e e e s e et e aeebeebeeaeebesbesbeseesbebeseens 45
C.2. FMEA, FIMECA, HAZOP......o ottt ettt bbbttt ettt st 46
C.3. HAZAN TTACKING ...ttt b bbbt e b b bt e bbb e b e bt ens 46
C.4. MarKOV Chain MOGEITNG ..ottt bbbttt bbbttt 47
C.5. Reliahility GroOWth MOGEIING......cccveieeeeeiriee st resre st st saese e teeene e e eneene 47

Software Safety Hazard Analysis

FIGURES
Figure 1. Waterfall Life CYCIE MOUE ..o e bbb ettt 6
Figure 2. Software Hazard Analysis within the Software Life CYCle.......ccvvvvereiecece e 7
Figure 3. Hazard SEVENitY Cal@QOIIES........uiuiiiiteiieiiesiesieseeseeeeieseetestessesaestestessessessessesseseesesseasessessessestesseseensensessensessnnm 9
Figure 4. Hazard Probability LEVEIS.........c.oiiiiiie e ettt bbb e e b e e 9
Figure 5. Example Matrix for Determining RISKc.coeiirireeere et s e 10
Figure 6. Software Qualities Relating to Potential Hazards.............cooveeriirieiniineseeseeete e 10
Figure 7. Guide Phrases for SOftware QUEIITIES.........c.coeririiiriienee st s s s 11
Figure 8. Example of a SOftware ArChitECIUIE...........ccecuereeceee e r e s re st st srenaeaeseeennem 17
Figure 9. Determination of ArchiteCture RIiSK LEVEIScvcicuieicececece ettt 18
Figure 10. Outline of a SOftware SAfELY PLaN. ..ot e e 26
Figure 11. |EEE 1228 Suggested Safety ANBIYSES..... ..ottt see et sae st seesbe st seeseebesaeneanes 27
Figure 12. Hazard Severity Categories (from Mil-Std 882C)coeoieiiiniiirnense et 28
Figure 13. Hazard Probability Levels (from Mil-Std 882C)cccoeiiiinininernenne e 28
Figure 14. Detailed Safety Tasks (from Mil-Std 882C)ccuevurieriererieiiresiesesee e ee s et seeneenem 29
Figure 15. Example Matrix for Residual Risk (from Mil-Std 882C)cccceverererericieieeie s 29
Figure 16. Example Software Hazard Criticality Matrix (from Mil-Std 882C).........ccoceoiririerinirenesere e 31
Figure 17. Summary of Safety System ACES IdentifiCation..........ccocooiiiiiriie it 35
Figure 18. Summary of Software Requirements ACES 1dentifiCation..........c.cooveninninninse e 35
Figure 19. Summary of Software Design ACES [dentifiCationcccoeviiririnniennenneseree e 36
Figure 20. Summary of Software Code ACES [dentifiCation..........cccovvcviirieriesesere e 36
Figure 21. Summary of General Guidelinesfor ACE RESOIULION..........cceciiiieiiesieie ettt snens 37
Figure 22. Classes of Hazards (HAMMEr 1972)oooiiieeeeeiere ettt ettt sbe bbb b b se b e sean 38
APPENdiX C FIQUIES: FAUITIEBSE.......cieieeie ettt et ettt b e b ae b e s besbe s ee s besbese e b e beneeneenes 48
ApPPendiX C FigUreS: HAZOPLIMIZESc.oiiiieeieieee ettt sttt b et b et bt bbbt ene 55
APPENIX C FIGUIES: HBZTTBCcveeeitieietiieiesee ittt bbbt b et b bbbttt 61
APPENdiX C FIGUIES: CARIMS.........o ettt st e e e e s s e s re s be s tesae st e e se e e en e e e e e eseeseeneerensessesaesbenbeseeneensenen 70
APPENAIX C FIGUIES: CASREc.oi i ieiieietetee ettt ettt st e e st e st e et e e esaesa e e e aeeseeseeaeabestesaestebesseseansantensensenem 76

vi

Software Safety Hazard Analysis

ACKNOWLEDGMENT

The author thanks and acknowledges the efforts of Mr. John Gallagher from the Nuclear Regulatory
Commission who reviewed this work and provided insights and comments.

vii

Software Safety Hazard Analysis

ACE
CHA
COTS
DOD
ETA
FMEA
FMECA
FSE
FTA
HAZOP
1&C
IEEE
MOD
NPP
NSCCA
O&SHA
PHA
PHL
PIE
PRA
RPS

SDD
SHA
SRS
SSP
SwHA
V&V

ABBREVIATIONS

Abnormal Condition or Event
Component Hazard Analysis
Commercia Off-the-Shelf

Department of Defense

Event Tree Analysis

Failure Modes and Effects Analysis
Failure Modes, Effects and Criticality Analysis
Functions, Systems and Equipment
Fault Tree Analysis

Hazard and Operability Analysis
Instrumentation and Control

Institute of Electronic and Electrical Engineers
Ministry of Defense

Nuclear Power Plant

Nuclear Safety Cross-Check Analysis
Operating and Support Hazard Analysis
Preliminary Hazard Anaysis
Preliminary Hazard List

Postul ated Initiating Event

Probabilistic Risk Assessment

Reactor Protection System

Software Architecture Description
Software Design Description

System Hazard Analysis

Software Requirements Specification
Software Safety Plan

Software Hazard Analysis

Verification and Validation

viii

Section 1. Introduction

SOFTWARE SAFETY HAZARD ANALYSIS

1. INTRODUCTION

1.1. Purpose

Techniques for analyzing the safety and
reliability of analog-based el ectronic protection
systems that serve to mitigate hazards in process
control systems have been developed over many
years, and are reasonably well understood. An
exampleis the protection system in a nuclear
power plant. The extension of these techniques
to systems which include digital computersis
not well developed, and thereis little consensus
among software engineering experts and saf ety
experts on how to analyze such systems.

One possible technique is to extend hazard
analysisto include digital computer-based
systems. If safety is considered to be a measure
of the degree of freedom from risk, then
softwar e safety ensures that the software in the
computer system will execute within the
application system without resulting in
unacceptabl e risk. Hazard analysisis a method
of identifying portions of a system which have
the potential for unacceptable hazards; the
purposeisto (1) encourage design changes
which will reduce or eliminate hazards, or (2)
carry out specia analyses and tests which can
provide increased confidence in especially
vulnerable portions of the system.

Software is frequently overlooked during system
hazard analyses, but this is unacceptable when
the software isin control of a potentially
hazardous operation. In such cases, hazard
analysis should be extended to fully cover the
software. A method for performing software
hazard analysisis proposed in this paper.?

The report considers only those hazards affected
by software. Only the software portion of the
digital computer system is considered. In

1 Neither this proposed method of hazard analysis nor any other
specific method has been endorsed by the U. S. Nuclear
Regulatory Commission.

particular, it is assumed that the computer
hardware operates without failure.?

As a conseguence of the above assumptions, the
report concentrates on two questions.

» |If the software operates correctly (i.e.,
followsits specifications), what is the
potential effect on system hazards?

» If the software operatesincorrectly (i.e.,
deviates from specifications), what is the
potential effect on system hazards?

This report does not discuss how to determine
whether a software item is correct or not.
Software analyses, reviews and tests directed at
finding faultsin the software are not considered
to be adirect part of software hazard analysis.
See Lawrence (1993) for a discussion of these
Verification and Validation (V& V) topics within
the software life cycle.

Although V&V is not considered to be part of
hazard analysis, the results of aV&V effort may
well be of use. For example, the use of testing to
estimate the reliability of a software item might
be used within afault tree analysis to estimate
the probability of a hazard occurring.

The performance of software hazard analysis
can be facilitated by the use of automated or
semi-automated tools. Examples of such tools
are considered in Appendix C.

1.2. Report Structure

Software hazard analysisis discussed in general
termsin Chapter 2. This chapter includes alist
of desirable prerequisites to software hazard
analysis, and a general discussion of the
approach proposed in the remainder of the
report.

Chapters 3-6 provide the details of the proposed
software hazard analysis process. Considerable
emphasisis placed on the requirements and

2p separate hardware hazard analysis and—for complex computer
systems—a separate computer system hazard analysis, are
recommended to supplement the software hazard analysis.

Section 1. Introduction

architecture design phases of the software life
cycleto reflect the belief that faultsin
requirements and architecture design
specifications have a greater potential impact on
system hazards than faults in the detailed design
or coding phases.

Tool support can be very helpful when
performing hazard analyses. A representative set
of toolsis discussed briefly in Appendix C. The
goal hereisto indicate the availability of
different types of tools. The tools were selected
for discussion based on availahility on a PC
platform and on price. No endorsement of
specific toolsisimplied.

The software hazard analysis process proposed
in this report is based on avariety of standards
and technical papers described in Appendix A.
The report continues with alist of possible
safety analysis techniques taken from a System
Safety Society report (Appendix B).

1.3. Terminology

Safety engineering has specia terminology of its
own. The following definitions, based primarily
on those contained in IEEE Standard 1228, are
used in thisreport. They are reasonably standard
definitions that have been specialized to
computer software in afew places.

* Anaccident isan unplanned event or series
of events that result in death, injury, illness,
environmental damage, or damage to or loss
of equipment or property. (The word mishap
is sometimes used to mean an accident,
financial loss or public relations |oss.)

Accidents generally can be divided into two
categories. those that involve the unplanned
release of energy and those that involve the
unplanned release of toxicity.

e A systemhazard is an application system
condition that is a prerequisite to an
accident.

That is, the system states can be divided into
two sets. No state in the first set (of
nonhazardous states) can directly lead to an
accident, while accidents may result from
any state in the second set (of hazardous
states). Note that a system can bein a
hazardous state without an accident
occurring. It isthe potential for causing an
accident that creates the hazard, not
necessarily the actuality, because conditions
that convert the hazard to an accident are not
concurrently present. A hazard is a potential
for an accident that can be converted to
actuality by encountering atriggering event
or condition within the foreseeable
operational envelope of the system.

e Thetermrisk is used to designate a measure
that combines the likelihood that a system
hazard will occur, the likelihood that an
accident will occur and an estimate of the
severity of the worst plausible accident.

The ssimplest measure isto simply multiply
the probability that a hazard occurs, the
conditional probability that atriggering
event or condition will occur while the
hazard is present, and the estimated worst-
case severity of the accident.

» SAfety-critical softwares is software whose
inadvertent response to stimuli, failure to
respond when required, response out-of-
sequence, or response in unplanned
combination with others can result in an
accident or the exacerbation of an accident.
This includes software whose operation or
failure to operate can lead to a hazardous
state, software intended to recover from
equipment malfunctions or

3The word “critical " asused in this report, refers to software
criticality, not nuclear criticality.

Section 2. Introduction to the Software Hazard Analysis Process

external insults, and software intended to
mitigate the severity of, or recover from, an
accident.4

e A critical systemisa system whose failure
may lead to unacceptabl e consequences. The
results of failure may affect the developers
of the system, its direct users, their
customers or the general public. The
consequences may involve loss of life or
property, financial loss, legal liability,
regulatory actions or even the loss of good
will if that is extremely important. The term
safety critical refers to a system whose
failure could lead to loss of life, injury, or
damage to the environment. For nuclear
reactors, this includes radiation releases or
exposure to the public or operators and
reactor workers.

» Theterm safety is used to mean the extent to
which asystem is free from system hazard.

* Hazard analysis is the process of identifying
and evaluating the hazards of a system, and
then either eliminating the hazard or
reducing its risk to an acceptable level.
(NIST 1993)

o Software hazard analysis*. . . eliminates or
controls software hazards and hazards
related to interfaces between the software
and the system (including hardware and
human components). It includes analyzing
the requirements, design, code, user
interfaces and changes.” (NIST 1993)

2. INTRODUCTION TO THE
SOFTWARE HAZARD
ANALY SISPROCESS

2.1. Software Hazard Analysisas
Part of System Safety Analysis

Software hazard analysis should be performed
within the context of the overall system design,

4 There are cases in which software other than control system
software can cause a hazard. An exampleis afire suppression
modeling program which makes incorrect recommendations for
fire suppression eguipment, causing a hazard in case of fire due to
lack of the necessary fire fighting equipment. Such cases are
outside the scope of this report.

for both those attributes of the system design
that contribute to the system’ s ability to perform
the assigned tasks that are derived from the
plant’s safety mission as well as the assigned
tasks derived from the plant’s primary mission
that could be detrimental to the plant’s safety
mission. Consequently, those performing the
software hazard analysis must understand the
role of the software in the performance of the
system safety functions and also in the
performance of the system control and
monitoring functions, and the effect of the
software acting within the system with respect to
its potentia impact on the accomplishment of
the plant’s safety mission. This understanding is
obtained from the system safety analysis; in
particular, the system’ s hazard analysis. IEEE
Standard 1228 presents the relationship between
the system safety analysis and the software
safety analysisin more detail. The following
discussion provides an overview of the safety
case for anuclear power plant.

The safety properties of a nuclear reactor design
are fundamentally affected by three broad design
principles: quality, diversity and defense-in-
depth. These principles may be applied at
various levels of the design; determining where
and how to apply the principlesis one of the
more important activities of the design process.
All three principles should have wide
applicability to other forms of process control
systems.

The main hazardsin a nuclear reactor are the
possibility of arapid, energetic fission reaction
(e.g., Chernobyl) and the release of radioactive
fission products which are the waste products of
the fission reaction. In the U.S. (and many other
countries), regulations mandate that the physics
of the core design make rapid reactions self
limiting. This|leaves the prevention of the
release of fission products as the main hazard to
be controlled.

Three levels of defense-in-depth are provided to
control the release of fission products. Eachis
sufficient to prevent public exposure to any
significant level of radiation. First, each element
of the fuel is surrounded by abarrier. In light
water reactors, the fuel is composed of

Section 2. Introduction to the Software Hazard Analysis Process

numerous metal tubes, each tube containing fuel
pellets and associated fission products. Second,
fission products that might be released from the
fuel are further contained by the reactor coolant
systems. Should some event cause breach of
both of these barriers, athird barrier, the
containment building, surrounds the reactor
coolant system. Each of these barriersis
fundamentally different in design, providing
diversity at each level of defense-in-depth.

Barrier integrity ismaintained first by building
in a high degree of quality, and second by
ensuring the barriers are not exposed to
environmental conditions that exceed design
assumptions. Active systems are provided to
enforce these environmental limits. For example,
the most important environmental considerations
for the fuel arethat the heat generated by the
fuel be limited, and that the heat that is
generated be taken away. These are the safety
functions that must be accomplished to ensure
the barrier (fuel clad) immediately surrounding
the fuel and fission products remains intact.
Diversity and defense-in-depth are provided for
these functions. For example, power can be
limited by dropping solid neutron absorbers
(control rods) or injecting liquid absorber into
the coolant system.

Each function can be actuated by multiple
independent systems. For example, the control
rods may be inserted automatically by the
control system, the reactor protection system,
the ATWS (Anticipated Transient Without
Scram) Mitigation System, the Engineered
Safety Actuation System (ESFAS), or the
reactor operator. In proposed U. S. advanced
reactor designs that involve computer-based
control and protection systems, at least two
diverse, automatic systems must be capabl e of
initiating each safety function such that the
consequences of each postulated accident are
acceptable. Furthermore, sufficient information
and manual controls must be provided to allow
the operator to start and control each safety
function.

This diversity may be accomplished via
diversity in the computer systems. Hardware
diversity may include multiple CPU types and

multiple communication paths. Software
diversity could involve independent cal culations
of the process state using different types of
informati on—temperature and pressure
calculations in one piece of software compared
to pressure and neutron flux in another piece—
either of which is sufficient to determine, in
time, if backup systems must be started to
achieve safety functions.

Finally, quality parts and design are used to
reduce the probability of any individual failures
from occurring.

2.2. Software Hazard Analysisas
Part of Software Design

The ultimate objectives of any hazard analysis
program are to identify and correct deficiencies
and to provide information on the necessary
safeguards. Thisis certainly true of Software
Hazard Analysis. Thereis no point to the
analysis unless appropriate action is taken. At
least four types of actions may be appropriate,
depending on the circumstances:

1. The system design may be changed to
eliminate identified hazards which are
affected by software or are not adequately
handled by software, or to reduce the
hazards to acceptable levels, or to adjust the
system architecture so that identified
hazards are compensated by defense-in-
depth.

2. The software design may be changed to
eliminate identified hazards, or reduce them
to acceptable levels.

3. Thequality of the software may be
improved sufficiently to reduce the
probability of a hazard to an acceptable
level.

4. The application system may be rejected if it
is considered too hazardous.

2.3. General Approach to Software
Hazard Analysis

Software hazard analysis should be a defined
aspect of the software life cycle. No specific life

Section 2. Introduction to the Software Hazard Analysis Process

cycleis endorsed here (see Lawrence (1993) for
adiscussion of life cycles). To provide some
specificity to the discussion, awaterfall life
cycleisassumed, as shown in Figure 1. Not all
the phasesin the figure are included in the
hazard analysis.

Hazard analysis begins with analyses of the
reactor design which identify parameter limits of
the safe operating region for the thermal -
hydraulic properties of the reactor. This provides
avariety of documents which serve asthe
starting point for the software hazard analysis.
The general approach is shown in Figure 2,
which shows the technical development
activities (requirements, architecture, design,
code), the V&V activities, and the hazard
analysis activities. Results of the various
software hazard analyses are used, as
appropriate, to change the protection system
design, change the software architecture or
design, and to identify portions of the software
which require increased attention to quality.

This report does not discuss methods or
techniques for performing the recommended
hazard analyses. Little extensive experience with
analysis techniques has been reported in the
literature. Hazard and Operability Analysis
(HAZOP), Failure Modes and Effects Analysis
(FMEA) and Fault Tree Analysis (FTA) are
possibilities (see Appendix A). Other potential
possibilities are listed in Appendix B.

2.4. Prerequisites to Software
Hazard Analysis

Considerable work is required before a software
hazard analysis process can begin. The
following list will generally require some
modificationsto fit specific projects. Since
iterations of analyses are necessary as the
software devel opment proceeds, no strict
chronological rigidity isimplied. For example, a
Preliminary Hazard Analysisis needed before a
Software Requirements Hazard Analysis can
take place. However, the results of that analysis
or some other requirements analysis might result
in asystem design change, which in turn might
reguire modifications to the Preliminary Hazard
Analysis.

Each of the prerequisite steps should result in
one or more documents. These will be required
in order to perform the various software hazard
analyses.

1. Prepare aPreliminary Hazard List (PHL) for
the application system. Thiswill contain a
list of all identified hazards, and will
generally be based on the reactor Safety
Analysis Report and the list of Postulated
Initiating Events (PIE).

2. Prepare aPreliminary Hazard Analysis
(PHA) for the application system and
subsystems which have impact on the
software. This evauates each of the hazards
contained in the PHL, and should describe
the expected impact of the software on each
hazard.

It isrecommended that the PHA assign a
preliminary severity level to each hazard.
The method outlined in IEC 1226 is
acceptable (see Appendix A.1.4 for a
discussion). This method assigns alevel
code of A, B or C to each hazard, where “A”
is assigned to the most critical software.

3. Carry out the required hazard investigations
and evaluations at the application system
and application subsystem level. This should
include an evaluation of the impact of
software on hazards.

There are at least four potential impacts of
software on each hazard (see | EEE 1228,
discussed in Appendix A.1.1). These are:

a. The software may challenge the reactor
safety systems; failure of the softwareto
operate correctly has the potential for
creating a hazardous condition that must
be removed or mitigated by some other
system. An exampleis a software-based
reactor control system whose failure
may initiate a reactor transient that
causes reactor operation to diverge
toward an unsafe operating region.

Section 2. Introduction to the Software Hazard Analysis Process

Systems Design

™

Requirements
Specification

NN

Architecture
Design

AN

Software Design

NN

Software
Implementation

AN

Integration

NN

Validation

AN

Installation

NN

Operation and
Maintenance

Figure 1. Waterfall Life Cycle M odel

Section 2. Introduction to the Software Hazard Analysis Process

System Safety Organization

System Design
Spec

System Design
Spec

n | N n
SAR
PHA
Report
PHL Report P Report

Analyze

Hazards

SRS

Report

Analyze Analyze Analyze
Report Hazards Report Hazards Report Hazards
Report Report
SAD SDD Code
Code
SAD SDD Write
Code

SAD

Verify
Detailed
Design

Architectuye

SDD

Code

Verify and

Test Code

V&V Organization

Figure 2. Software Hazard Analysiswithin the Software Life Cycle

Abbreviations
Preliminary Hazard Analysis
Preliminary Hazard Analysis

Software Architecture Description

Safety Analysis Report

Software Design Description

Software Requirements Specification

Section 3. Requirements Hazard Analysis

b. The software may be responsible for
preventing a hazard from progressing to
an incident; failure of the software to
operate correctly has the potential for
converting the hazard to an accident. An
example is software control of the
reactor trip system, where potential
failure of this system during an
emergency would permit a reactor
transient to progress to a significant
event.

c. The software may be used to move the
system from a hazardous stateto a
nonhazardous state, where the hazardous
state is caused by some portion of the
application system other than the
software. Software controlling the
emergency core cooling systemsisan
example of this, where decay heat is
removed to move areactor from hot to
cold shutdown when other cooling
systems are unavailable.

d. The software may be used to mitigate
the consequences of an accident. An
example is software controlling the
containment isolation system, which
prevents aradiation release inside the
containment structure from escaping and
affecting the general public.

4. Assign aconsequence level and probability
of occurrence to each identified hazard. The
tables shown in Figures 3 and 4 can be used
asabasisfor this. These tables are based on
IEC 1226 and MilStd 882C, and are
discussed in Appendix A.1.4 and A.1.2,
respectively.

5. Prepareatablelike that in Figure 5 from the
tables created in step 4. Thistable can be
used to derive an estimate of risk for each
hazard.

This table matches the hazard severity
categories of Figure 3 to the hazard
probability levels of Figure 4 to obtain a
measure of overal risk. Thus, events with
critical severity and occasional probability
of occurrence are judged to have high risk.

6. For each hazard identified in the PHL, PHA
or other hazard analyses, identify its risk
level using the table prepared in step 5.

7. Prepare an application system requirements
specification.

8. Create and document a system design,
which shows the allocation of safety
functions to software components and other
system components and shows how the
software component and the remaining
application system components will
coordinate to address the hazards discovered
in previous analyses.

9. Prepare the remaining documents to the
extent required in order to specify, design,
implement, verify and analyze the software
component of the RPS. Thisincludes
analysis of additional hazards introduced by
choice of specific digital hardware,
computer language, compiler, software
architecture, software design techniques, and
design rules. This analysiswill be revisited
asdigital system design and software design
are elaborated.

3. REQUIREMENTSHAZARD
ANALYSIS

Software requirements hazard analysis
investigates the impact of the software
requirements specification on system hazards.
Requirements can generally be divided into sets,
each of which addresses some aspect of the
software. These sets are termed qualities here. A
recommended list of qualitiesto be considered
during software hazard analysisis given in
Figure 6. Some variations may be required to
match special situations.

The general intent of software requirements
hazard analysisisto examine each quality, and
each requirement within the quality, to assess
the likely impact on hazards. McDermid et al.
(1994, 1995) suggest the use of guide wordsto
assess impact; thisideais adapted here. A set of
guide phrasesis supplied for each quality that
can be used to help assess the impact on hazards
of each requirement associated with the quality.

These guide phrases are shown in Figure 7. This
figure suggests concepts to be examined for each
requirement that relates to specific software
qualities. In some cases, a requirement may
affect more than one quality. The figure lists the
various qualities; in some cases, these are further
divided into aspects of the quality. Thethird
column contains a code for the life cycle phase
during which use of the guide phrase is
recommended.

Section 3. Requirements Hazard Analysis

Letters are:

R Requirements

A Architectural Design

D Detailed Design

C Coding

The last column contains the guide phrases. In
addition to the phrases listed, the analyst should

examine the impact on hazards if the
requirement is actually met.

Description Category

Definition

Catastrophic A

Death, system loss, or severe environmental damage

Critical

Severe injury, severe occupational illness, mgjor
system or environmental damage

Marginal

Minor injury, minor occupational illness or minor
system or environmental damage

Negligible

L ess than minor injury, occupational illness or less
than minor system or environmental damage

Figure 3. Hazard Severity Categories
(based on |EC 1126)

Description Level

Estimate of Probability

Frequent A

Likely to occur frequently

Probable B

Will occur severa timesin the
lifeof anitem

Occasional C

Likely to occur sometimein the
life of anitem

Remote D

Unlikely but possible to occur
inthelife of anitem

Improbable E

So unlikely, it can be assumed
occurrence may not be
experienced

Figure 4. Hazard Probability Levels
(based on Mil-Std 882C)

Section 3. Requirements Hazard Analysis

Hazard Category
Frequency Catastrophic Critical Marginal Negligible
Frequent High High High Medium
Probable High High Medium Low
Occasional High High Medium Low
Remote High Medium Low Low
Improbable Medium Low Low Low
Figure5. Example Matrix for Determining Risk
Quality Description of Quality
Accuracy The term accuracy denotes the degree of freedom from error of sensor and
operator input, the degree of exactness possessed by an approximation or
measurement, and the degree of freedom of actuator output from error.
Capacity The terms capacity denotes the ability of the software system to achieveits

obj ectives within the hardware constraints imposed by the computing
system being used. The main factors of capacity are Execution Capacity
(timing) and Storage Capacity (sizing). These refer, respectively, to the
availability of sufficient processing time and memory resources to satisfy
the software requirements.

Functionality

The term functionality denotes the operations which must be carried out by
the software. Functions generally transform input information into output
information in order to affect the reactor operation. Inputs may be obtained
from sensors, operators, other equipment or other software as appropriate.
Outputs may be directed to actuators, operators, other equipment or other
software as appropriate.

Reliability

Theterm reliability denotes the degree to which a software system or
component operates without failure. This definition does not consider the
consequences of failure, only the existence of failure. Reliability
requirements may be derived from the general system reliability
requirements by imposing reliability requirements on the software
components of the application system which are sufficient to meet the
overall system reliability requirements.

Robustness

The term robustness denotes the ability of a software system or component
to function correctly in the presence of invalid inputs or stressful
environmental conditions. This includes the ability to function correctly
despite some violation of the assumptions in its specification.

Saf ety

The term safety is used here to denote those properties and characteristics
of the software system that directly affect or interact with system safety
considerations. The other qualities discussed in this table are important
contributors to the overall safety of the software-controlled protection
system, but are primarily concerned with the internal operation of the
software. This quality is primarily concerned with the affect of the software
on system hazards and the measures taken to control those hazards.

Security

The term security denotes the ability to prevent unauthorized, undesired
and unsafe intrusions. Security is asafety concernin so far as such
intrusions can affect the safety-related functions of the software.

Figure 6. Softwar e Qualities Relating to Potential Hazards

10

Section 3. Requirements Hazard Analysis

Quality Aspect Phase Guide Phrases

Accuracy Sensor RADC Stuck at all zeroes
RADC Stuck at all ones
RADC Stuck elsewhere
RADC Below minimum range

RADC Above maximum range
RADC Within range, but wrong
RADC Physical units are incorrect
RADC Wrong datatype or data size
Actuator RADC Stuck at all zeroes

RADC Stuck at all ones

RADC Stuck elsewhere

RADC Below minimum range

RADC Above maximum range
RADC Within range, but wrong
DC Physical units are incorrect

DC Wrong datatype or data size

Operator Input &
Output

Numerical value below acceptable range

Numerical value above acceptable range

Numerical value within range, but wrong

Numerical value has wrong physical units

2|28 B2

Numerical value has wrong data type or data
size

Y
>

Non-numerical value incorrect

Calculation RDC Calculated result is outside acceptable error
bounds (too low)

RDC Calculated result is outside acceptable error
bounds (too high)

RDC Formulaor equation iswrong

RDC Physical units are incorrect

RDC Wrong datatype or data size

Figure 7. Guide Phrasesfor Software Qualities

11

Section 3. Requirements Hazard Analysis

Capacity Message RADC Message volume is below stated minimum
RADC M essage volume exceeds stated maximum
RADC Message volumeis erratic
RADC Message rate is below stated minimum
RADC Message rate exceeds stated maximum
RADC Message rateis erratic
RADC M essage contents are incorrect, but plausible
RADC M essage contents are obviously scrambled

Timing RADC Input signal failsto arrive

RADC Input signal occurs too soon

RADC Input signal occurstoo late

RADC Input signal occurs unexpectedly

RADC System behavior is not deterministic

RADC Output signal failsto arrive at actuator

RADC Output signal arrives too soon

RADC Output signal arrivestoo late

RADC Output signa arrives unexpectedly

R Insufficient time allowed for operator action

AD Processing occurs in an incorrect sequence

DC Code enters non-terminating loop

DC Deadlock occurs

C Interrupt loses data

C Interrupt loses control information

Functionality RA Function is not carried out as specified (for

